论文标题

图密度统治指数

The Graph Density Domination Exponent

论文作者

Stoner, Cynthia

论文摘要

对于图形$ g $和$ h $,可以确定$ t(g,w)$和$ t(h,w)$的一般图$ W $之间的关系?我们通过密度统治指数的框架来研究此问题,该指数定义为最小的常数$ c $,因此每个图$ w $ $ t(g,w)\ ge t(h,w)^c $。这种广泛的概括涵盖了Sidorenko的猜想,Erdős-Simonover在路径上定理以及与图形同态密度有关的各种其他陈述。我们介绍了一些通用工具来估计密度支配指数,并将以前的结果扩展到新的图形制度。

For graphs $G$ and $H$, what relations can be determined between $t(G,W)$ and $t(H,W)$ for a general graph $W$? We study this problem through the framework of the density domination exponent, which is defined to be the smallest constant $c$ such that $t(G,W)\ge t(H,W)^c$ for every graph $W$. This broad generalization encompasses the Sidorenko conjecture, the Erdős-Simonovits Theorem on paths, and a variety of other statements relating graph homomorphism densities. We introduce some general tools for estimating the density domination exponent, and extend previous results to new graph regimes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源