论文标题
梯度$ρ$ -IENSTEIN SOLITON和应用
Gradient $ρ$-Einstein Solitons and Applications
论文作者
论文摘要
在本文中,我们主要在双向扭曲的产品歧管上研究梯度$ρ$ -IENSTEIN SOLITON。更明确地,我们为双弯曲的产品歧管获得了必要和足够的条件,使其成为梯度$ρ$ -IENSTEIN SOLITON。我们还将主要结果应用于扭曲的产品时空模型,例如通用的Robertson-Walker和标准的静态空间以及三维Walker歧管。我们最终确定没有三维强度的同型对称梯度$ρ$ -IENSTEIN SOLITON。
In this paper, we mainly study gradient $ρ$-Einstein solitons on doubly warped product manifolds. More explicitly, we obtain necessary and sufficient conditions for a doubly warped product manifold to be a gradient $ρ$-Einstein soliton. We also apply our main result to warped product spacetime models such as generalized Robertson-Walker and standard static spacetimes as well as 3-dimensional Walker manifolds. We finally establish that there is no 3-dimensional esentially conformally symmetric gradient $ρ$-Einstein soliton.