论文标题

使用伴随法的可区分宇宙学模拟

Differentiable Cosmological Simulation with Adjoint Method

论文作者

Li, Yin, Modi, Chirag, Jamieson, Drew, Zhang, Yucheng, Lu, Libin, Feng, Yu, Lanusse, François, Greengard, Leslie

论文摘要

深度学习的快速进步不仅带来了无数强大的神经网络,而且还带来了受益的突破。特别是,使用可区分的模拟,自动分化(AD)工具和计算加速器(例如GPU)促进了宇宙的正向建模。基于分析或自动反向传播,当前可区分的宇宙学模拟受记忆的限制,因此需要在时间和空间/质量分辨率之间进行权衡,通常两者都牺牲。我们使用伴随方法和反向时间集成提出了一种不含此类约束的新方法。它可以在现场级别实现更大,更准确的远期建模,并将改善基于梯度的优化和推理。我们以开源粒子网格(PM)$ n $ body库PMWD(带衍生物的粒子网)实现它。基于功能强大的AD系统JAX,PMWD完全可区分,并且在GPU上具有高度性能。

Rapid advances in deep learning have brought not only myriad powerful neural networks, but also breakthroughs that benefit established scientific research. In particular, automatic differentiation (AD) tools and computational accelerators like GPUs have facilitated forward modeling of the Universe with differentiable simulations. Based on analytic or automatic backpropagation, current differentiable cosmological simulations are limited by memory, and thus are subject to a trade-off between time and space/mass resolution, usually sacrificing both. We present a new approach free of such constraints, using the adjoint method and reverse time integration. It enables larger and more accurate forward modeling at the field level, and will improve gradient based optimization and inference. We implement it in an open-source particle-mesh (PM) $N$-body library pmwd (particle-mesh with derivatives). Based on the powerful AD system JAX, pmwd is fully differentiable, and is highly performant on GPUs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源