论文标题
关于$ z_p^l $ - 电压封面的Jacobian的增长
On the growth of the Jacobian in $Z_p^l$-voltage covers of graphs
论文作者
论文摘要
我们调查了雅各布人在有限连接的多编码的电压封面中的$ p $ - 部分的增长,在该电压封面中,电压组与$ \ m \ m \ m \ m \ m \ m \ m mathbb {z} _p^l $,对于某些$ {l \ ge 2} $,并且我们研究了越来越多的Greenberg数字的构图的构图。 $ \ mathbb {z} _p $ - 数字字段的扩展。此外,在这种情况下,我们证明了伊瓦沙(Iwasawa)的主要猜想,我们研究了(广义)伊瓦沙瓦(Iwasawa)不变性的变化,因为它跨越了$ \ mathbb {z} _p^l $ - 固定有限图$ x $的covers。我们讨论了许多例子;特别是,我们构建了具有非平凡的Iwasawa不变的示例。
We investigate the growth of the $p$-part of the Jacobians in voltage covers of finite connected multigraphs, where the voltage group is isomorphic to $\mathbb{Z}_p^l$ for some ${l \ge 2}$, and we study analogues of a conjecture of Greenberg on the growth of class numbers in multiple $\mathbb{Z}_p$-extensions of number fields. Moreover we prove an Iwasawa main conjecture in this setting, and we study the variation of (generalised) Iwasawa invariants as one runs over the $\mathbb{Z}_p^l$-covers of a fixed finite graph $X$. We discuss many examples; in particular, we construct examples with non-trivial Iwasawa invariants.