论文标题
使用双重参数量子传感器进行光学分发远程两节点微波纠缠
Optically Distributing Remote Two-node Microwave Entanglement using Doubly Parametric Quantum Transducers
论文作者
论文摘要
双聚合量子换能器(DPT),例如电力机械设备,表现为光学和微波域之间的量子互连,从而实现了超导量子系统之间的长距离量子网络。但是,任何传感器都将不可避免地引入损失和噪声,从而降低量子网络的性能。我们探讨了如何使用DPT来构建能够通过比较14个不同的网络拓扑来在光学链路上分布远程两模式微波纠缠的网络。我们分析的14个拓扑包括不同的换能器操作,纠缠资源和纠缠交换测量的组合。对于每种拓扑,我们在DPT参数上得出了必须超过DPT参数的必要和足够的分析阈值,以分布微波微波纠缠。我们发现阈值取决于给定的网络拓扑以及可用的纠缠资源和测量功能。在与现实网络相关的高光损耗极限中,我们发现光学两种模式挤压真空状态的每一半的下调是最强大的拓扑结构。最后,我们使用当前可用于DPT参数,纠缠资源和交换测量值的当前可实现的值来评估为每个拓扑生成的微波 - 微波纠缠的量,从而发现令人鼓舞的结果是,几种拓扑结合了当前实验能力。
Doubly-parametric quantum transducers (DPTs), such as electro-opto-mechanical devices, show promise as quantum interconnects between the optical and microwave domains, thereby enabling long distance quantum networks between superconducting qubit systems. However, any transducer will inevitably introduce loss and noise that will degrade the performance of a quantum network. We explore how DPTs can be used to construct a network capable of distributing remote two-mode microwave entanglement over an optical link by comparing fourteen different network topologies. The fourteen topologies we analyze consist of combinations of different transducer operations, entangled resources, and entanglement swapping measurements. For each topology, we derive a necessary and sufficient analytic threshold on DPT parameters that must be exceeded in order to distribute microwave-microwave entanglement. We find that the thresholds are dependent on the given network topology, along with the available entanglement resources and measurement capabilities. In the high optical loss limit, which is relevant to realistic networks, we find that down-conversion of each half of an optical two-mode squeezed vacuum state is the most robust topology. Finally, we numerically evaluate the amount of microwave--microwave entanglement generated for each topology using currently achievable values for DPT parameters, entangled resources, and swapping measurements, finding the encouraging result that several topologies are within reach of current experimental capabilities.