论文标题

一个有效的各向异性粘膜塑料模型,该模型专用于高对比度延展层压微结构:应用于马氏体的板条子结构

An effective anisotropic visco-plastic model dedicated to high contrast ductile laminated microstructures: Application to lath martensite substructure

论文作者

Rezazadeh, V., Peerlings, R. H. J., Maresca, F., Hoefnagels, J. P. M., Geers, M. G. D.

论文摘要

在特定类型的层或层状的微观结构(例如珠光石和马氏体)中,塑料滑动在平行于层间边界的方向上有利。这可能是由于形态学和晶体学方向之间的相互作用,或者是由于层状微结构几何形状引起的塑料滑移施加的约束。本文提出了一种基于微力学的,计算高效的独立模型,用于包含较软片状层的特定类型的层状微结构,它们足够薄,可以被视为嵌入了代表更硬层的基质中的离散滑移平面。因此,该模型被构造为各向同性粘膜塑性模型,该模型具有额外的方向依赖性平面塑性变形机制。当施加的载荷在软膜的方向上投射时,这种附加模式将被激活,引起了大量的剪切应力。否则,塑性变形仅由模型的各向同性部分控制。提出的模型的响应是通过与无限周期性两相层压板的直接数值模拟(DNS)进行比较来评估的。结果表明,模型的屈服行为遵循与参考模型相同的行为。可以观察到所提出的模型是高度各向异性的,各向异性的程度取决于平面模式的滑动电阻(或屈服应力)与各向同性部分的对比度之间的对比度。然后,将配方应用于用层间薄的奥氏体膜对板条马氏体的子结构进行建模。它在双相(DP)钢微结构的中尺度模拟中被利用。将结果与标准各向同性模型的结果和完整的晶体可塑性模型进行了比较。

In particular types of layer- or lamellar-like microstructures such as pearlite and lath martensite, plastic slip occurs favorably in directions parallel to inter-lamellar boundaries. This may be due to the interplay between morphology and crystallographic orientation or, more generally, due to constraints imposed on the plastic slip due to the lamellar microstructural geometry. This paper proposes a micromechanics based, computationally efficient, scale independent model for particular type of lamellar microstructures containing softer lamellae, which are sufficiently thin to be considered as discrete slip planes embedded in a matrix representing the harder lamellae. Accordingly, the model is constructed as an isotropic visco-plastic model which is enriched with an additional orientation-dependent planar plastic deformation mechanism. This additional mode is activated when the applied load, projected on the direction of the soft films, induces a significant amount of shear stress. Otherwise, the plastic deformation is governed solely by the isotropic part of the model. The response of the proposed model is assessed via a comparison to direct numerical simulations (DNS) of an infinite periodic two-phase laminate. It is shown that the yielding behavior of the model follows the same behavior as the reference model. It is observed that the proposed model is highly anisotropic, and the degree of anisotropy depends on the contrast between the slip resistance (or yield stress) of the planar mode versus that of the isotropic part. The formulation is then applied to model the substructure of lath martensite with inter-layer thin austenite films. It is exploited in a mesoscale simulation of a dual-phase (DP) steel microstructure.The results are compared with those of a standard isotropic model and a full crystal plasticity model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源