论文标题

基于可观察的网络参数的5G无人机攻击的合成数据集

A Synthetic Dataset for 5G UAV Attacks Based on Observable Network Parameters

论文作者

Viana, Joseanne, Farkhari, Hamed, Sebastiao, Pedro, Lagen, Sandra, Koutlia, Katerina, Bojovic, Biljana, Dinis, Rui

论文摘要

合成数据集对机器学习研究人员有益,因为可以在培训和测试阶段尝试新的策略和算法。这些数据集可以很容易地包含更多的方案,这些方案可能会根据合成数据的质量来替换真实数据的研究或可以进行补充,并且在某些情况下可以替换实际数据测量结果。他们还可以解决不平衡的数据问题,避免过度拟合,并且可以在训练中使用实际数据进行测试。在本文中,据我们所知,基于以下关键可观察的网络参数(指示功率水平:接收的信号强度指示器(RSSI))以及对干扰 - 填充 - 填充 - 命中率(SINR)的信号(rssi),我们介绍了5G和超越网络中无人驾驶飞机(UAV)攻击的第一个合成数据集。该数据的主要目的是为无人机通信安全启用深层网络开发。特别是,用于算法开发或应用于无人机攻击识别的时间序列数据的分析。当静态或移动的无人机攻击者靶向城市环境中身份验证的无人机时,我们提出的数据集提供了对网络功能的见解。该数据集还考虑了网络中身份验证的陆地用户的存在和不存在,这可能会降低深网识别攻击的能力。此外,数据还可以更深入地理解用于机器学习和统计研究的5G物理和MAC层中可用的指标。该数据集将在link Archive-beta.ics.uci.edu上找到

Synthetic datasets are beneficial for machine learning researchers due to the possibility of experimenting with new strategies and algorithms in the training and testing phases. These datasets can easily include more scenarios that might be costly to research with real data or can complement and, in some cases, replace real data measurements, depending on the quality of the synthetic data. They can also solve the unbalanced data problem, avoid overfitting, and can be used in training while testing can be done with real data. In this paper, we present, to the best of our knowledge, the first synthetic dataset for Unmanned Aerial Vehicle (UAV) attacks in 5G and beyond networks based on the following key observable network parameters that indicate power levels: the Received Signal Strength Indicator (RSSI) and the Signal to Interference-plus-Noise Ratio (SINR). The main objective of this data is to enable deep network development for UAV communication security. Especially, for algorithm development or the analysis of time-series data applied to UAV attack recognition. Our proposed dataset provides insights into network functionality when static or moving UAV attackers target authenticated UAVs in an urban environment. The dataset also considers the presence and absence of authenticated terrestrial users in the network, which may decrease the deep networks ability to identify attacks. Furthermore, the data provides deeper comprehension of the metrics available in the 5G physical and MAC layers for machine learning and statistics research. The dataset will available at link archive-beta.ics.uci.edu

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源