论文标题

Grasmos:基因调节网络的图形标牌模型选择

GRASMOS: Graph Signage Model Selection for Gene Regulatory Networks

论文作者

Brilliantova, Angelina, Miller, Hannah, Bezáková, Ivona

论文摘要

签名的网络,即具有正面和负面的网络,通常在社交媒体到流行病学的各个领域中出现。建模签名的网络具有许多实际应用,包括为难以获得真实数据的实验的合成数据集创建。有影响力的先验作品提出并研究了各种图形拓扑模型,以及为不同应用域选择最合适模型的问题。但是,这些拓扑模型通常是未签名的。 在这项工作中,我们在基因调节的背景下提出了一个新颖的基于类似样的优化问题,用于建模签名网络并展示其。基因的调节相互作用在生物体发育中起关键作用,而当破裂时,可能导致严重的生物体异常和疾病。我们的贡献是三倍:首先,我们为给定拓扑设计设计了新的标牌模型。基于参数设置,我们讨论了其对基因调节网络(GRN)的生物学解释。其次,我们设计计算最大可能性的算法 - 取决于参数设置,我们的算法范围从封闭形式表达式到MCMC采样。第三,我们评估了在合成数据集和现实世界中的大GRN上的算法结果。我们的工作可能导致对未知基因法规的预测,生物学假设的产生以及现实的GRN基准数据集。

Signed networks, i.e., networks with positive and negative edges, commonly arise in various domains from social media to epidemiology. Modeling signed networks has many practical applications, including the creation of synthetic data sets for experiments where obtaining real data is difficult. Influential prior works proposed and studied various graph topology models, as well as the problem of selecting the most fitting model for different application domains. However, these topology models are typically unsigned. In this work, we pose a novel Maximum-Likelihood-based optimization problem for modeling signed networks given their topology and showcase it in the context of gene regulation. Regulatory interactions of genes play a key role in organism development, and when broken can lead to serious organism abnormalities and diseases. Our contributions are threefold: First, we design a new class of signage models for a given topology. Based on the parameter setting, we discuss its biological interpretations for gene regulatory networks (GRNs). Second, we design algorithms computing the Maximum Likelihood -- depending on the parameter setting, our algorithms range from closed-form expressions to MCMC sampling. Third, we evaluated the results of our algorithms on synthetic datasets and real-world large GRNs. Our work can lead to the prediction of unknown gene regulations, the generation of biological hypotheses, and realistic GRN benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源