论文标题
s-Split t-ragified Iwasawa模块的循环组合猜想和半模块
Cyclotomic conjecture and semi-simplicity of S-split T-ramified Iwasawa modules
论文作者
论文摘要
我们表明,在先前的论文中引入的T型t型iWasawa的特征多项式的循环猜想是在所有有限端口集的Z $ {\ ell} $中所满足的Z $ {\ ell} $ - 固定点的固定点的排名猜想都等同于Leopoldt和Gross-Kuz'min的经典猜想的结合。
We show that the cyclotomic conjecture on the characteristic polynomial of T-ramified S-split Iwasawa modules introduced in a previous paper and satisfied by abelian fields governs the Z${\ell}$-rank of the submodule of fixed points for all finite disjoint sets S and T of places.Last, in the CM-case we prove that the weak and the strong versions of the cyclotomic conjecture both are equivalent to the conjunction of the classical conjectures of Leopoldt and Gross-Kuz'min.