论文标题

DeepVoxNet2:另一个CNN框架

DeepVoxNet2: Yet another CNN framework

论文作者

Bertels, Jeroen, Robben, David, Lemmens, Robin, Vandermeulen, Dirk

论文摘要

我们知道,对于基于CNN的图像分析,CNN映射函数和采样方案都至关重要。显然,这两个函数在同一空间中都可以运行,并带有图像轴$ \ MATHCAL {I} $和功能轴$ \ Mathcal {f} $。值得注意的是,我们发现没有框架统一两者并自动跟踪数据的空间来源。根据我们自己的实践经验,我们发现后者通常会导致难以交换的复杂编码和管道。本文介绍了1、2或3D图像分类或分割的框架:DeepVoxNet2(DVN2)。本文用作交互式教程,可以在公共DVN2存储库中在线找到预编译版本(包括代码块的输出)。该教程使用2018年多模式脑肿瘤图像分割基准(BRAT)的数据显示了3D分割管道的示例。

We know that both the CNN mapping function and the sampling scheme are of paramount importance for CNN-based image analysis. It is clear that both functions operate in the same space, with an image axis $\mathcal{I}$ and a feature axis $\mathcal{F}$. Remarkably, we found that no frameworks existed that unified the two and kept track of the spatial origin of the data automatically. Based on our own practical experience, we found the latter to often result in complex coding and pipelines that are difficult to exchange. This article introduces our framework for 1, 2 or 3D image classification or segmentation: DeepVoxNet2 (DVN2). This article serves as an interactive tutorial, and a pre-compiled version, including the outputs of the code blocks, can be found online in the public DVN2 repository. This tutorial uses data from the multimodal Brain Tumor Image Segmentation Benchmark (BRATS) of 2018 to show an example of a 3D segmentation pipeline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源