论文标题

用于工业机器故障诊断的数据融合技术:一项调查

Data fusion techniques for fault diagnosis of industrial machines: a survey

论文作者

Chaleshtori, Amir Eshaghi, aghaie, Abdollah

论文摘要

在工程学科中,预测维护技术在提高工业机器的系统安全性和可靠性中起着至关重要的作用。由于采用了关键和新兴的检测技术和大数据分析工具,因此数据融合方法变得越来越流行。本文彻底回顾了数据融合技术在预测性维护中的最新进展,重点是它们在机械故障诊断中的应用。在这篇综述中,主要目标是对现有文献进行分类,并报告最新的研究和方向,以帮助研究人员和专业人员对主题领域有清晰的了解。本文首先总结了故障诊断的基本数据融合策略。然后,对工业机器的故障诊断进行了对不同水平的数据融合的全面研究。总之,提出了基于数据融合的故障诊断挑战,机会和未来趋势的讨论。

In the Engineering discipline, predictive maintenance techniques play an essential role in improving system safety and reliability of industrial machines. Due to the adoption of crucial and emerging detection techniques and big data analytics tools, data fusion approaches are gaining popularity. This article thoroughly reviews the recent progress of data fusion techniques in predictive maintenance, focusing on their applications in machinery fault diagnosis. In this review, the primary objective is to classify existing literature and to report the latest research and directions to help researchers and professionals to acquire a clear understanding of the thematic area. This paper first summarizes fundamental data-fusion strategies for fault diagnosis. Then, a comprehensive investigation of the different levels of data fusion was conducted on fault diagnosis of industrial machines. In conclusion, a discussion of data fusion-based fault diagnosis challenges, opportunities, and future trends are presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源