论文标题

增材参数优化的增强学习方法

A Reinforcement Learning Approach for Process Parameter Optimization in Additive Manufacturing

论文作者

Dharmadhikari, Susheel, Menon, Nandana, Basak, Amrita

论文摘要

金属添加剂制造(AM)的过程优化对于确保重复性,控制微结构并最小化缺陷至关重要。尽管通过传统的实验设计和统计过程映射来解决这一问题,但对即时优化框架的见解有限,可以集成到金属AM系统中。此外,由于预算限制,金属AM合金或系统无法支持大多数这些方法。为了解决这个问题,本文介绍了在金属AM领域中转化为优化问题的强化学习(RL)方法。提出了一个基于Q学习的非政策RL框架,以找到最佳的激光功率($ p $) - 扫描速度($ V $)组合,目的是保持稳态融化池深度。为此,使用实验验证的EAGAR-TSAI公式用于模拟激光导向的能量沉积环境,在该环境中,激光在$ p-V $空间上作为代理作为代理,从而最大程度地提高了融化池深度接近最佳量的奖励。训练过程的高潮产生了一个Q-table,其中最高Q值的状态($ p,v $)对应于优化的过程参数。最终的熔体池深度和Q值对$ p-V $空间的映射显示与实验观察一致。因此,该框架提供了一种无模型的学习方法,没有任何先验。

Process optimization for metal additive manufacturing (AM) is crucial to ensure repeatability, control microstructure, and minimize defects. Despite efforts to address this via the traditional design of experiments and statistical process mapping, there is limited insight on an on-the-fly optimization framework that can be integrated into a metal AM system. Additionally, most of these methods, being data-intensive, cannot be supported by a metal AM alloy or system due to budget restrictions. To tackle this issue, the article introduces a Reinforcement Learning (RL) methodology transformed into an optimization problem in the realm of metal AM. An off-policy RL framework based on Q-learning is proposed to find optimal laser power ($P$) - scan velocity ($v$) combinations with the objective of maintaining steady-state melt pool depth. For this, an experimentally validated Eagar-Tsai formulation is used to emulate the Laser-Directed Energy Deposition environment, where the laser operates as the agent across the $P-v$ space such that it maximizes rewards for a melt pool depth closer to the optimum. The culmination of the training process yields a Q-table where the state ($P,v$) with the highest Q-value corresponds to the optimized process parameter. The resultant melt pool depths and the mapping of Q-values to the $P-v$ space show congruence with experimental observations. The framework, therefore, provides a model-free approach to learning without any prior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源