论文标题
具有混合轴向注意的参数效率变压器用于医学图像分割
Parameter-Efficient Transformer with Hybrid Axial-Attention for Medical Image Segmentation
论文作者
论文摘要
由于使用灵活的自我发挥机制,变形金刚在医学图像分析中取得了巨大的成功。但是,由于在建模视觉结构信息中缺乏固有的电感偏差,它们通常需要大规模的预训练时间表,从而将临床应用限制在昂贵的小规模医疗数据上。为此,我们提出了一个参数有效的变压器,以通过位置信息进行医学图像分割来探索固有的电感偏差。具体而言,我们从经验上研究了不同的编码策略如何影响感兴趣区域(ROI)的预测质量,并观察到ROI对编码策略的位置敏感。在此激励的情况下,我们提出了一种新型的混合轴向注意事项(HAA),一种位置自我注意事项形式,可以配备空间像素信息和相对位置信息作为归纳偏见。此外,我们引入了一种登陆机制来减轻培训时间表的负担,从而在小规模数据集中进行了有效的功能选择。在小子和COVID19数据集上进行的实验证明了我们方法比基线和以前的工作的优越性。内部工作流程可视化具有可解释性,以更好地验证我们的成功。
Transformers have achieved remarkable success in medical image analysis owing to their powerful capability to use flexible self-attention mechanism. However, due to lacking intrinsic inductive bias in modeling visual structural information, they generally require a large-scale pre-training schedule, limiting the clinical applications over expensive small-scale medical data. To this end, we propose a parameter-efficient transformer to explore intrinsic inductive bias via position information for medical image segmentation. Specifically, we empirically investigate how different position encoding strategies affect the prediction quality of the region of interest (ROI), and observe that ROIs are sensitive to the position encoding strategies. Motivated by this, we present a novel Hybrid Axial-Attention (HAA), a form of position self-attention that can be equipped with spatial pixel-wise information and relative position information as inductive bias. Moreover, we introduce a gating mechanism to alleviate the burden of training schedule, resulting in efficient feature selection over small-scale datasets. Experiments on the BraTS and Covid19 datasets prove the superiority of our method over the baseline and previous works. Internal workflow visualization with interpretability is conducted to better validate our success.