论文标题

暂时性和旅行语义的自我监督轨迹表示学习

Self-supervised Trajectory Representation Learning with Temporal Regularities and Travel Semantics

论文作者

Jiang, Jiawei, Pan, Dayan, Ren, Houxing, Jiang, Xiaohan, Li, Chao, Wang, Jingyuan

论文摘要

轨迹表示学习(TRL)是空间数据分析和管理的强大工具。 TRL的目的是将复杂的原始轨迹转换为低维表示向量,这些向量可以应用于各种下游任务,例如轨迹分类,聚类和相似性计算。现有的TRL工作通常将轨迹视为普通序列数据,而某些重要的时空特征(例如时间规律性和旅行语义)并未完全利用。为了填补这一空白,我们提出了一个新颖的自我监督轨迹表示学习框架,并具有时间规律性和旅行语义,即开始。提出的方法包括两个阶段。第一阶段是轨迹图案增强的图形注意网络(TPE-GAT),该网络将道路网络特征和旅行语义转换为路段的代表向量。第二阶段是时间感知的轨迹编码器(tat-enc),它在与轨迹表示向量相同的轨迹中编码道路段的表示向量,同时将时间正常纳入轨迹表示。此外,我们还设计了两个自制任务,即跨度掩盖的轨迹恢复和轨迹对比度学习,以将轨迹的时空特征引入我们的开始框架的训练过程中。通过在两个大规模现实世界数据集上针对三个下游任务的大规模现实数据集进行了广泛的实验来验证所提出方法的有效性。该实验还表明,我们的方法可以在不同的城市转移以适应异质轨迹数据集。

Trajectory Representation Learning (TRL) is a powerful tool for spatial-temporal data analysis and management. TRL aims to convert complicated raw trajectories into low-dimensional representation vectors, which can be applied to various downstream tasks, such as trajectory classification, clustering, and similarity computation. Existing TRL works usually treat trajectories as ordinary sequence data, while some important spatial-temporal characteristics, such as temporal regularities and travel semantics, are not fully exploited. To fill this gap, we propose a novel Self-supervised trajectory representation learning framework with TemporAl Regularities and Travel semantics, namely START. The proposed method consists of two stages. The first stage is a Trajectory Pattern-Enhanced Graph Attention Network (TPE-GAT), which converts the road network features and travel semantics into representation vectors of road segments. The second stage is a Time-Aware Trajectory Encoder (TAT-Enc), which encodes representation vectors of road segments in the same trajectory as a trajectory representation vector, meanwhile incorporating temporal regularities with the trajectory representation. Moreover, we also design two self-supervised tasks, i.e., span-masked trajectory recovery and trajectory contrastive learning, to introduce spatial-temporal characteristics of trajectories into the training process of our START framework. The effectiveness of the proposed method is verified by extensive experiments on two large-scale real-world datasets for three downstream tasks. The experiments also demonstrate that our method can be transferred across different cities to adapt heterogeneous trajectory datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源