论文标题

部分可观测时空混沌系统的无模型预测

Testing Heisenberg's measurement uncertainty relation of three observables

论文作者

Mao, Ya-Li, Chen, Hu, Niu, Chang, Li, Zheng-Da, Yu, Sixia, Fan, Jingyun

论文摘要

海森堡的两个量子可观察物的测量不确定性关系(MUR)对于量子基础和量子信息科学的当代研究至关重要。除了在这里,我们报告了三个量子可观察物的首次实验测试。遵循布什,拉赫蒂和沃纳的提议[物理学。 Rev. A 89,012129(2014)],我们首先建立了严格的无偏乘以观察物的三胞胎,因为合并的近似误差与不兼容措施相结合。然后,我们开发一个凸编程协议,以数字找到不兼容度量的确切值和相应的最佳测量值。此外,我们提出了一种新颖的最佳关节测量实施,并使用单光子量子量子进行实验测试。最后,我们讨论以分析计算某些对称三胞胎的不兼容度量的确切值。我们预计,这项工作可能会刺激与海森伯格多种可观察物的不确定性关系相关的广泛利益,从而丰富我们对量子力学的理解并激发量子信息科学中的创新应用。

Heisenberg's measurement uncertainty relations (MUR) of two quantum observables are essential for contemporary researches in quantum foundations and quantum information science. Going beyond, here we report the first experimental test of MURs for three quantum observables. Following the proposal of Bush, Lahti, and Werner [Phys. Rev. A 89, 012129 (2014)], we first establish rigorously MURs for triplets of unbiased qubit observables as combined approximation errors lower-bounded by an incompatibility measure. We then develop a convex programming protocol to numerically find the exact value of the incompatibility measure and the corresponding optimal measurements. Furthermore, we propose a novel implementation of optimal joint measurements and experimentally test our MURs using a single-photon qubit. Lastly, we discuss to analytically calculate the exact value of incompatibility measure for some symmetric triplets. We anticipate that this work may stimulate broad interests associated with the Heisenberg's uncertainty relation of multiple observables, enriching our understanding of quantum mechanics and inspiring innovative applications in quantum information science.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源