论文标题

基于多层感知器的替代模型,用于有限元分析

Multilayer Perceptron-based Surrogate Models for Finite Element Analysis

论文作者

Lima, Lawson Oliveira, Rosenberger, Julien, Antier, Esteban, Magoules, Frederic

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Many Partial Differential Equations (PDEs) do not have analytical solution, and can only be solved by numerical methods. In this context, Physics-Informed Neural Networks (PINN) have become important in the last decades, since it uses a neural network and physical conditions to approximate any functions. This paper focuses on hypertuning of a PINN, used to solve a PDE. The behavior of the approximated solution when we change the learning rate or the activation function (sigmoid, hyperbolic tangent, GELU, ReLU and ELU) is here analyzed. A comparative study is done to determine the best characteristics in the problem, as well as to find a learning rate that allows fast and satisfactory learning. GELU and hyperbolic tangent activation functions exhibit better performance than other activation functions. A suitable choice of the learning rate results in higher accuracy and faster convergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源