论文标题

Lotka-volterra Predator-Prey模型,具有不同的承载能力

Lotka-Volterra predator-prey model with periodically varying carrying capacity

论文作者

Swailem, Mohamed, Täuber, Uwe C.

论文摘要

我们研究了捕食者 - 捕集的相互作用的随机空间Lotka-volterra(LV)模型,但遭受了定期变化的承载能力。具有现场晶格占用限制的LV模型代表猎物的有限食品资源表现出连续的积极到吸收相变。活跃相是由时空模式以追捕和逃避波的形式维持。二维晶格上的蒙特卡洛模拟用于研究环境季节性变化对物种共存的影响。我们的仿真结果也与平均场分析进行了比较。我们发现,捕食者和猎物共存的参数区域相对于定期携带能力变化时的固定情况增大。我们定期变化的LV系统的固定状态显示了随机模型与平均场近似之间的定性一致性。但是,在周期性携带能力切换环境下,平均场速率方程预测了周期倍加倍方案,这些场景被随机晶格模型中的内部反应噪声冲洗掉。利用晶格模拟的视觉表示和动态相关功能,我们研究了追求和逃避波如何受到随之而来的共振效应的影响。相关函数测量表明,系统对环境突然变化的响应时间延迟。在我们的模拟中观察到共振特征,从而导致持续的空间相关性延长。在快速和缓慢的周期性切换的极端范围内探索了不同的有效静态环境。快速切换制度中平均场方程的分析可以对固定状态进行半定量描述。

We study the stochastic spatial Lotka-Volterra (LV) model for predator-prey interaction subject to a periodically varying carrying capacity. The LV model with on-site lattice occupation restrictions that represent finite food resources for the prey exhibits a continuous active-to-absorbing phase transition. The active phase is sustained by spatio-temporal patterns in the form of pursuit and evasion waves. Monte Carlo simulations on a two-dimensional lattice are utilized to investigate the effect of seasonal variations of the environment on species coexistence. The results of our simulations are also compared to a mean-field analysis. We find that the parameter region of predator and prey coexistence is enlarged relative to the stationary situation when the carrying capacity varies periodically. The stationary regime of our periodically varying LV system shows qualitative agreement between the stochastic model and the mean-field approximation. However, under periodic carrying capacity switching environments, the mean-field rate equations predict period-doubling scenarios that are washed out by internal reaction noise in the stochastic lattice model. Utilizing visual representations of the lattice simulations and dynamical correlation functions, we study how the pursuit and evasion waves are affected by ensuing resonance effects. Correlation function measurements indicate a time delay in the response of the system to sudden changes in the environment. Resonance features are observed in our simulations that cause prolonged persistent spatial correlations. Different effective static environments are explored in the extreme limits of fast- and slow periodic switching. The analysis of the mean-field equations in the fast-switching regime enables a semi-quantitative description of the stationary state.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源