论文标题

联合雷达通信中的双盲反卷积恢复的贝尔林 - 塞尔伯格极端化

Beurling-Selberg Extremization for Dual-Blind Deconvolution Recovery in Joint Radar-Communications

论文作者

Monsalve, Jonathan, Vargas, Edwin, Mishra, Kumar Vijay, Sadler, Brian M., Arguello, Henry

论文摘要

最近对集成感应和通信的兴趣导致了新型信号处理技术的设计,以从覆盖的雷达通信信号中恢复信息。在这里,我们专注于光谱共存方案,其中雷达和通信系统的通道和传输信号是公共接收器未知的。在此双盲反卷积(DBD)问题中,接收器接收一个多载波无线通信信号,该信号与雷达信号反映了多个目标。通信和雷达通道分别以对应于多个传输路径和目标对应的连续值范围或延迟表示。先前的工作通过原子规范最小化解决了这个不知名的DBD问题中未知通道和信号的恢复,但取决于雷达和通信通道的单个最小分离条件。在本文中,我们使用Beurling-Selberg插值理论的极端函数提供了最佳的关节分离条件。此后,我们将DBD提出为低级修饰的Hankel基质检索,并通过核标准最小化解决。我们使用多个信号分类(音乐)方法从恢复的低级别矩阵中估算未知目标和通信参数。我们表明,联合分离条件还保证了音乐的基础范德曼德矩阵的条件很好。数值实验验证了我们的理论发现。

Recent interest in integrated sensing and communications has led to the design of novel signal processing techniques to recover information from an overlaid radar-communications signal. Here, we focus on a spectral coexistence scenario, wherein the channels and transmit signals of both radar and communications systems are unknown to the common receiver. In this dual-blind deconvolution (DBD) problem, the receiver admits a multi-carrier wireless communications signal that is overlaid with the radar signal reflected off multiple targets. The communications and radar channels are represented by continuous-valued range-times or delays corresponding to multiple transmission paths and targets, respectively. Prior works addressed recovery of unknown channels and signals in this ill-posed DBD problem through atomic norm minimization but contingent on individual minimum separation conditions for radar and communications channels. In this paper, we provide an optimal joint separation condition using extremal functions from the Beurling-Selberg interpolation theory. Thereafter, we formulate DBD as a low-rank modified Hankel matrix retrieval and solve it via nuclear norm minimization. We estimate the unknown target and communications parameters from the recovered low-rank matrix using multiple signal classification (MUSIC) method. We show that the joint separation condition also guarantees that the underlying Vandermonde matrix for MUSIC is well-conditioned. Numerical experiments validate our theoretical findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源