论文标题
通过超立方体嵌入改进的单调测试仪
Improved Monotonicity Testers via Hypercube Embeddings
论文作者
论文摘要
我们在$ p $偏见的措施以及HyperGrid $ [m]^n $上显示了布尔超立方体的改进的单调测试仪。我们的结果是: 1。对于(0,1)$中的任何$ p \,对于$ p $偏见的超单行,我们显示了一个非自适应测试仪,该测试仪使$ \ tilde {o}(\ sqrt {n}/\ varepsilon^2)$ 1 $ $ $ \ farpion $ \ farts $ \ farmos $ \至少$ 2/3 $。 2。对于所有$ m \ in \ mathbb {n} $,我们显示了$ \ tilde {o}(\ sqrt {n} m^3/\ varepsilon^2)$ QUERY单调测试仪,超过$ [m]^n $。 我们还在这些域中建立了相应的定向等级不平等现象。以前,由于黑色,Chakrabarty和Seshadhri而引起的最著名的测试仪具有$ω(n^{5/6})$查询复杂性。我们的结果最适合多同源因素和对$ M $的依赖性。 我们的证明使用措施嵌入布尔亚超立方体的单调嵌入的概念,可用于减少在任意产品域上对布尔立方体进行单调性测试的问题。嵌入尺寸$ n $的产品域上的函数将功能上的函数添加到一个较大尺寸$ n'$的布尔立方体上,同时保持其单调范围的距离;如果$ n'$不大于$ n $,则认为嵌入是有效的,我们展示了如何在上述设置中构建有效的嵌入。
We show improved monotonicity testers for the Boolean hypercube under the $p$-biased measure, as well as over the hypergrid $[m]^n$. Our results are: 1. For any $p\in (0,1)$, for the $p$-biased hypercube we show a non-adaptive tester that makes $\tilde{O}(\sqrt{n}/\varepsilon^2)$ queries, accepts monotone functions with probability $1$ and rejects functions that are $\varepsilon$-far from monotone with probability at least $2/3$. 2. For all $m\in\mathbb{N}$, we show an $\tilde{O}(\sqrt{n}m^3/\varepsilon^2)$ query monotonicity tester over $[m]^n$. We also establish corresponding directed isoperimetric inequalities in these domains. Previously, the best known tester due to Black, Chakrabarty and Seshadhri had $Ω(n^{5/6})$ query complexity. Our results are optimal up to poly-logarithmic factors and the dependency on $m$. Our proof uses a notion of monotone embeddings of measures into the Boolean hypercube that can be used to reduce the problem of monotonicity testing over an arbitrary product domains to the Boolean cube. The embedding maps a function over a product domain of dimension $n$ into a function over a Boolean cube of a larger dimension $n'$, while preserving its distance from being monotone; an embedding is considered efficient if $n'$ is not much larger than $n$, and we show how to construct efficient embeddings in the above mentioned settings.