论文标题
粘性剪切流中手性颗粒方向的不对称双重性
Asymmetric bistability of chiral particle orientation in viscous shear flows
论文作者
论文摘要
粘性剪切流中螺旋颗粒的迁移在手性颗粒分类中起着至关重要的作用。将非手续头部连接到螺旋颗粒上,导致诱导颗粒重新定向的风湿性扭矩。这种现象是造成细菌的细菌性鞭毛细菌作为剪切流中大肠杆菌的细菌性性变性。在这里,我们使用高分辨率的微打印技术来制造具有控制和可调的手性形状的微粒,该微粒由球形头和各种螺距和握手的螺旋尾部组成。通过观察微流体通道流中这些微粒的完全时间分辨动力学,我们获得了对手性诱导的方向动力学的宝贵见解。我们的实验模型系统使我们能够检查粒子伸长,手性和头部锻炼对不同流速对方向动力学的影响,同时最大程度地减少了布朗噪声的影响。通过我们的模型实验,我们证明了垂直于流动方向的粒子方向的不对称双重性。我们定量地解释了粒子平衡取向与粒子特性,初始条件和流速的函数以及通过理论模型的重新定向动力学的时间依赖性。使用边界元素模拟确定模型参数,并在没有任何可调节参数的情况下获得与实验的极好一致。我们的发现可以更好地理解手性颗粒的传输,细菌性风湿病,并可能允许开发目标递送应用。
The migration of helical particles in viscous shear flows plays a crucial role in chiral particle sorting. Attaching a non-chiral head to a helical particle leads to a rheotactic torque inducing particle reorientation. This phenomenon is responsible for bacterial rheotaxis observed for flagellated bacteria as Escherichia coli in shear flows. Here we use a high-resolution microprinting technique to fabricate micro-particles with controlled and tunable chiral shape consisting of a spherical head and helical tails of various pitch and handedness. By observing the fully time-resolved dynamics of these micro-particles in microfluidic channel flow, we gain valuable insights into chirality-induced orientation dynamics. Our experimental model system allows us to examine the effects of particle elongation, chirality, and head-heaviness for different flow rates on the orientation dynamics, while minimizing the influence of Brownian noise. Through our model experiments we demonstrate the existence of asymmetric bistability of the particle orientation perpendicular to the flow direction. We quantitatively explain the particle equilibrium orientations as a function of particle properties, initial conditions and flow rates, as well as the time-dependence of the reorientation dynamics through a theoretical model. The model parameters are determined using boundary element simulations and excellent agreement with experiments is obtained without any adjustable parameters. Our findings lead to a better understanding of chiral particle transport, bacterial rheotaxis and might allow the development of targeted delivery applications.