论文标题

将热力学减少为玻尔兹曼尼亚统计力学:宏观值的情况

Reducing Thermodynamics to Boltzmannian Statistical Mechanics: The Case of Macro Values

论文作者

Ehmann, Alexander

论文摘要

热力学宏变量(例如温度或体积宏变量)可以采用允许值的连续体,称为热力学宏观值。尽管指的是相同的宏观现象,但在一个重要方面,鲍尔茨曼尼亚统计力学(BSM)的宏变量与热力学宏变量有所不同:在鲍尔茨曼尼亚统计力学的框架内,系统的宏观值的宏观值与有限的相位空间的宏观空间均与隔离级别的空间相连,将有限的相位固定在台阶上,该阶段是隔离的。从概念上讲,这与热力学所描述的宏观值的连续演变以及BSM中假定的微型状态的连续演化不一致。我称这种差异称为不连续问题(DP)。我展示了它是如何来自BSM的框架并展示其后果的,尤其是将热力学减少到BSM的基础项目:热力学宏观值显示不在相应的BSM宏观值上进行监督。对于基础项目所设想的那种还原的疾病,超级态度是危险的。

Thermodynamic macro variables, such as the temperature or volume macro variable, can take on a continuum of allowable values, called thermodynamic macro values. Although referring to the same macro phenomena, the macro variables of Boltzmannian Statistical Mechanics (BSM) differ from thermodynamic macro variables in an important respect: within the framework of Boltzmannian Statistical Mechanics the evolution of macro values of systems with finite available phase space is invariably modelled as discontinuous, due to the method of partitioning phase space into macro regions with sharp, fixed boundaries. Conceptually, this is at odds with the continuous evolution of macro values as described by thermodynamics, as well as with the continuous evolution of the micro state assumed in BSM. This discrepancy I call the discontinuity problem (DP). I show how it arises from BSM's framework and demonstrate its consequences, in particular for the foundational project of reducing thermodynamics to BSM: thermodynamic macro values are shown to not supervene on the corresponding BSM macro values. With supervenience being a conditio sine qua non for the kind of reduction envisaged by the foundational project, the latter is in jeopardy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源