论文标题
文本对话中的深刻情感识别:调查
Deep Emotion Recognition in Textual Conversations: A Survey
论文作者
论文摘要
对话中的情绪认识(ERC)是迈向成功人机互动的关键一步。尽管该领域在过去几年中取得了巨大的进步,但新的应用程序和实施方案带来了新颖的挑战和机遇。这些范围从利用对话环境,说话者和情感动态建模,到解释常识表达,非正式语言和讽刺,应对实时ERC的挑战,识别情绪原因,跨数据集,多语言ERC和可解释性的不同分类学。这项调查首先介绍ERC,详细介绍此任务的挑战和机遇。它继续描述情绪分类法和采用此类分类法的各种ERC基准数据集。其次是将ERC中最杰出的作品与所使用的神经体系结构的解释进行了描述。然后,它为更好的框架提供了可取的ERC实践,详细介绍了在注释,建模和方法中处理主观性的方法,以处理典型的不平衡ERC数据集。最后,它介绍了系统的审核表,比较了有关所使用方法及其性能的几项作品。基于这些作品的基准测试重点介绍了预先训练的变压器语言模型,以提取语音表示,并使用门控和图形神经网络来建模这些话语之间的相互作用,并利用生成的大语言模型在生成框架内处理ERC。这项调查强调了利用技术来解决不平衡数据,混合情绪的探索以及在学习阶段结合注释主观性的好处。
Emotion Recognition in Conversations (ERC) is a key step towards successful human-machine interaction. While the field has seen tremendous advancement in the last few years, new applications and implementation scenarios present novel challenges and opportunities. These range from leveraging the conversational context, speaker, and emotion dynamics modelling, to interpreting common sense expressions, informal language, and sarcasm, addressing challenges of real-time ERC, recognizing emotion causes, different taxonomies across datasets, multilingual ERC, and interpretability. This survey starts by introducing ERC, elaborating on the challenges and opportunities of this task. It proceeds with a description of the emotion taxonomies and a variety of ERC benchmark datasets employing such taxonomies. This is followed by descriptions comparing the most prominent works in ERC with explanations of the neural architectures employed. Then, it provides advisable ERC practices towards better frameworks, elaborating on methods to deal with subjectivity in annotations and modelling and methods to deal with the typically unbalanced ERC datasets. Finally, it presents systematic review tables comparing several works regarding the methods used and their performance. Benchmarking these works highlights resorting to pre-trained Transformer Language Models to extract utterance representations, using Gated and Graph Neural Networks to model the interactions between these utterances, and leveraging Generative Large Language Models to tackle ERC within a generative framework. This survey emphasizes the advantage of leveraging techniques to address unbalanced data, the exploration of mixed emotions, and the benefits of incorporating annotation subjectivity in the learning phase.