论文标题

CL2R:兼容终身学习表示

CL2R: Compatible Lifelong Learning Representations

论文作者

Biondi, Niccolo, Pernici, Federico, Bruni, Matteo, Mugnai, Daniele, Del Bimbo, Alberto

论文摘要

在本文中,我们提出了一种方法,以部分模仿自然智力,以解决兼容的终身学习表征问题。我们采用一个学习代理的观点,该学习代理有兴趣以开放动态宇宙中的对象实例的方式,以此方式,其内部功能表示的任何更新都不会使图库中的功能无法进行视觉搜索。我们将这个学习问题称为兼容的终身学习表征(CL2R),因为它考虑了终身学习范式中兼容的代表学习。我们将平稳性确定为要持有特征代表以实现兼容性的属性,并提出了一种新颖的培训程序,鼓励本地和全球的平稳性。由于平稳性,学习功能的统计属性不会随着时间的推移而变化,从而使它们与以前学习的功能互操作。标准基准数据集的广泛实验表明,我们的CL2R培训程序的表现优于替代基准和最先进的方法。我们还提供新颖的指标,以在各种顺序学习任务中的灾难性遗忘下专门评估兼容表示学习。 https://github.com/niccobiondi/compatiblelifelongresentation上的代码。

In this paper, we propose a method to partially mimic natural intelligence for the problem of lifelong learning representations that are compatible. We take the perspective of a learning agent that is interested in recognizing object instances in an open dynamic universe in a way in which any update to its internal feature representation does not render the features in the gallery unusable for visual search. We refer to this learning problem as Compatible Lifelong Learning Representations (CL2R) as it considers compatible representation learning within the lifelong learning paradigm. We identify stationarity as the property that the feature representation is required to hold to achieve compatibility and propose a novel training procedure that encourages local and global stationarity on the learned representation. Due to stationarity, the statistical properties of the learned features do not change over time, making them interoperable with previously learned features. Extensive experiments on standard benchmark datasets show that our CL2R training procedure outperforms alternative baselines and state-of-the-art methods. We also provide novel metrics to specifically evaluate compatible representation learning under catastrophic forgetting in various sequential learning tasks. Code at https://github.com/NiccoBiondi/CompatibleLifelongRepresentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源