论文标题
通过区域建议网络预训练的标签有效对象检测
Label-Efficient Object Detection via Region Proposal Network Pre-Training
论文作者
论文摘要
根据实例歧视的借口任务,自我监督的预训练促进了标签有效对象检测的最新进步。但是,现有的研究仅着眼于预训练,仅用于特征提取器网络,以学习下游检测任务的可转移表示。这导致有必要在微调阶段从头开始训练多个检测特异性模块。我们认为,可以预先培训的区域提案网络(RPN)是一种常见的检测特异性模块,以减少多阶段检测器的定位误差。在这项工作中,我们提出了一个简单的借口任务,为RPN提供了有效的预训练,以有效地改善下游对象检测性能。我们评估方法对基准对象检测任务和其他下游任务的功效,包括实例分割和少量检测。与没有RPN预训练的多阶段探测器相比,我们的方法能够始终如一地改善下游任务性能,并在标签降低设置中发现最大的收益。
Self-supervised pre-training, based on the pretext task of instance discrimination, has fueled the recent advance in label-efficient object detection. However, existing studies focus on pre-training only a feature extractor network to learn transferable representations for downstream detection tasks. This leads to the necessity of training multiple detection-specific modules from scratch in the fine-tuning phase. We argue that the region proposal network (RPN), a common detection-specific module, can additionally be pre-trained towards reducing the localization error of multi-stage detectors. In this work, we propose a simple pretext task that provides an effective pre-training for the RPN, towards efficiently improving downstream object detection performance. We evaluate the efficacy of our approach on benchmark object detection tasks and additional downstream tasks, including instance segmentation and few-shot detection. In comparison with multi-stage detectors without RPN pre-training, our approach is able to consistently improve downstream task performance, with largest gains found in label-scarce settings.