论文标题

使用加速度计信号和差分卷积神经网络检测火车驱动轴损坏

Detecting train driveshaft damages using accelerometer signals and Differential Convolutional Neural Networks

论文作者

Galdo, Antía López, Guerrero-López, Alejandro, Olmos, Pablo M., García, María Jesús Gómez

论文摘要

铁路车轴维护对于避免灾难性故障至关重要。如今,条件监测技术在行业中越来越突出,以防止巨大的成本和对人类生命的损害。本文提出了基于应用于振动信号时频表示的高级2D跨跨神经网络(CNN)架构的铁路轴条件监测系统的开发。为此,讨论了几个预处理步骤和不同类型的深度学习(DL)和机器学习(ML)架构,以设计准确的分类系统。最终的系统将铁路轴振动信号转换为时频域表示,即频谱图,因此,训练二维CNN,根据其裂缝来对其进行分类。结果表明,所提出的方法的表现优于测试的几种替代方法。 CNN体系结构已在3种不同的轮毂组件中进行了测试,在对4个不同级别的缺陷分类时,AUC分数为0.93、0.86和0.75,表现优于任何其他架构,并显示出高度的可靠性。

Railway axle maintenance is critical to avoid catastrophic failures. Nowadays, condition monitoring techniques are becoming more prominent in the industry to prevent enormous costs and damage to human lives. This paper proposes the development of a railway axle condition monitoring system based on advanced 2D-Convolutional Neural Network (CNN) architectures applied to time-frequency representations of vibration signals. For this purpose, several preprocessing steps and different types of Deep Learning (DL) and Machine Learning (ML) architectures are discussed to design an accurate classification system. The resultant system converts the railway axle vibration signals into time-frequency domain representations, i.e., spectrograms, and, thus, trains a two-dimensional CNN to classify them depending on their cracks. The results showed that the proposed approach outperforms several alternative methods tested. The CNN architecture has been tested in 3 different wheelset assemblies, achieving AUC scores of 0.93, 0.86, and 0.75 outperforming any other architecture and showing a high level of reliability when classifying 4 different levels of defects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源