论文标题

通过光谱扩散快速生成

Fast Graph Generation via Spectral Diffusion

论文作者

Luo, Tianze, Mo, Zhanfeng, Pan, Sinno Jialin

论文摘要

生成图形结构化数据是一个具有挑战性的问题,需要学习图形的基本分布。已经提出了各种模型,例如图形VAE,图形和图扩散模型,以生成有意义且可靠的图,其中扩散模型已实现了最新的性能。在本文中,我们认为在整个图邻接矩阵空间上运行全级扩散SDE,阻碍了学习图拓扑生成的扩散模型,因此显着恶化了生成的图形数据的质量。为了解决这一限制,我们提出了一个有效但有效的图形光谱扩散模型(GSDM),该模型由图形光谱空间上的低级扩散SDE驱动。与标准扩散模型相比,我们的光谱扩散模型被进一步证明可以享有基本强大的理论保证。各种数据集的广泛实验表明,我们提出的GSDM被证明是SOTA模型,它通过表现出明显更高的发电质量,而且计算消耗少得多。

Generating graph-structured data is a challenging problem, which requires learning the underlying distribution of graphs. Various models such as graph VAE, graph GANs, and graph diffusion models have been proposed to generate meaningful and reliable graphs, among which the diffusion models have achieved state-of-the-art performance. In this paper, we argue that running full-rank diffusion SDEs on the whole graph adjacency matrix space hinders diffusion models from learning graph topology generation, and hence significantly deteriorates the quality of generated graph data. To address this limitation, we propose an efficient yet effective Graph Spectral Diffusion Model (GSDM), which is driven by low-rank diffusion SDEs on the graph spectrum space. Our spectral diffusion model is further proven to enjoy a substantially stronger theoretical guarantee than standard diffusion models. Extensive experiments across various datasets demonstrate that, our proposed GSDM turns out to be the SOTA model, by exhibiting both significantly higher generation quality and much less computational consumption than the baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源