论文标题

冗余对分布式优化和学习中弹性的影响

Impact of Redundancy on Resilience in Distributed Optimization and Learning

论文作者

Liu, Shuo, Gupta, Nirupam, Vaidya, Nitin H.

论文摘要

该报告考虑了基于服务器的体系结构中弹性分布式优化和随机学习的问题。该系统包括服务器和多个代理,每个代理都有其自身的本地成本函数。代理商与服务器合作,找到了本地成本功能的最低总计。在随机学习的背景下,代理的局部成本是根据该代理商的数据计算的损失函数。在本报告中,我们在一个系统中考虑了这个问题,其中某些代理可能是拜占庭式有缺陷的,而某些代理可能会很慢(也称为Stragglers)。在这种情况下,我们研究了可以为上述问题获得“近似”解决方案的条件。特别是,我们介绍了$(f,r;ε)$ - 弹性的概念,以表征在最高$ f $ byzantine有缺陷的代理的存在下,近似真正的解决方案,最多$ r $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ε代表更好的近似值。我们还引入了一种名为$(f,r;ε)$ - 冗余的度量,以表征代理的成本功能的冗余。在解决总成本最小化问题时,更大的冗余可以更好地近似。 在本报告中,我们(从理论和经验上)建设性地表明$(f,r; \ Mathcal {o}(ε))$ - 鉴于当地成本功能足够多余,在实践中确实可以实现弹性。

This report considers the problem of resilient distributed optimization and stochastic learning in a server-based architecture. The system comprises a server and multiple agents, where each agent has its own local cost function. The agents collaborate with the server to find a minimum of the aggregate of the local cost functions. In the context of stochastic learning, the local cost of an agent is the loss function computed over the data at that agent. In this report, we consider this problem in a system wherein some of the agents may be Byzantine faulty and some of the agents may be slow (also called stragglers). In this setting, we investigate the conditions under which it is possible to obtain an "approximate" solution to the above problem. In particular, we introduce the notion of $(f, r; ε)$-resilience to characterize how well the true solution is approximated in the presence of up to $f$ Byzantine faulty agents, and up to $r$ slow agents (or stragglers) -- smaller $ε$ represents a better approximation. We also introduce a measure named $(f, r; ε)$-redundancy to characterize the redundancy in the cost functions of the agents. Greater redundancy allows for a better approximation when solving the problem of aggregate cost minimization. In this report, we constructively show (both theoretically and empirically) that $(f, r; \mathcal{O}(ε))$-resilience can indeed be achieved in practice, given that the local cost functions are sufficiently redundant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源