论文标题
安德森的加速梯度方法具有能量以进行优化问题
Anderson acceleration of gradient methods with energy for optimization problems
论文作者
论文摘要
Anderson加速度(AA)是一种有效的技术,用于加速定点迭代的收敛性,可以设计用于加速优化方法。我们通过将安德森加速度适应能量自适应梯度法(AEGD)[ARXIV:2010.05109]提出了一种新颖的优化算法。根据AEGD的收敛结果,考察了我们算法的可行性,尽管它不是定点迭代。我们还通过在安德森混合的每种实现时量化了梯度下降的AA的加速收敛速率。我们的实验结果表明,所提出的算法几乎不需要对超参数进行调整,并且表现出较高的快速收敛。
Anderson acceleration (AA) as an efficient technique for speeding up the convergence of fixed-point iterations may be designed for accelerating an optimization method. We propose a novel optimization algorithm by adapting Anderson acceleration to the energy adaptive gradient method (AEGD) [arXiv:2010.05109]. The feasibility of our algorithm is examined in light of convergence results for AEGD, though it is not a fixed-point iteration. We also quantify the accelerated convergence rate of AA for gradient descent by a factor of the gain at each implementation of the Anderson mixing. Our experimental results show that the proposed algorithm requires little tuning of hyperparameters and exhibits superior fast convergence.