论文标题
测量仪表和异常分辨率
Gauging the Gauge and Anomaly Resolution
论文作者
论文摘要
在本文中,我们探讨了由我们配音的“计量仪表”的过程产生的代数和几何结构,该过程涉及促进特定全局的,将独立的对称性归为局部。通过测量量规理论中的全局1形移位对称性,我们证明了谎言代数交叉模块的结构及其相关的2-尺寸理论。此外,基于Lie代数2划分的模块,再次在2尺寸理论上执行此过程产生了3个规le的理论。因此,“计量仪表”的物理过程可以数学上理解为\ textit {分类}。考虑了这种高规模结构的应用,包括重力,高能物理学和冷凝物质理论。特别令人感兴趣的是\ textit {异常分辨率}的机制,其中人们引入了更高的结构来吸收曲率激发。已证明该机制可以使QFT中的异常背景对称性始终如一。
In this paper, we explore the algebraic and geometric structures that arise from a procedure we dub "gauging the gauge", which involves the promotion of a certain global, coordinate independent symmetry to a local one. By gauging the global 1-form shift symmetry in a gauge theory, we demonstrate that the structure of a Lie algebra crossed-module and its associated 2-gauge theory arises. Moreover, performing this procedure once again on a 2-gauge theory generates a 3-gauge theory, based on Lie algebra 2-crossed-modules. As such, the physical procedure of "gauging the gauge" can be understood mathematically as a \textit{categorification}. Applications of such higher-gauge structures are considered, including gravity, higher-energy physics and condensed matter theory. Of particular interest is the mechanism of \textit{anomaly resolution}, in which one introduces a higher-gauge structure to absorb curvature excitations. This mechanism has been shown to allow one to consistently gauge an anomalous background symmetry in QFT.