论文标题

VGFLOW:可见性引导的流动网络用于人类重新安息

VGFlow: Visibility guided Flow Network for Human Reposing

论文作者

Jain, Rishabh, Singh, Krishna Kumar, Hemani, Mayur, Lu, Jingwan, Sarkar, Mausoom, Ceylan, Duygu, Krishnamurthy, Balaji

论文摘要

人类安息的任务涉及产生一个人站在任意想象的姿势中的现实形象。产生感知准确的图像存在许多困难,现有方法在保存纹理,保持纹理,保持模式相干性,尊重布的边界,处理阻塞,操纵皮肤的产生等方面存在限制。这些困难进一步加剧了这些困难,这一事实被人类的姿势方向较大,体现的可能性不大,劳动的局面以及劳动的不同之处在于,不断劳d的局面,以及劳动的局面,是劳动的局部性,而不是劳动的局面,并且是劳动的局面。人口。为了减轻这些困难并合成感知准确的图像,我们提出了VGFLOF。我们的模型使用一个可见性引导的流量模块将流程分解为目标的可见且可见的部分,以同时纹理保存和样式操纵。此外,为了应对不同的身体形状并避免网络伪像,我们还纳入了自我监管的“现实”损失,以改善输出。 VGFLOW在定性和定量上观察到的不同图像质量指标(SSIM,LPIPS,FID)实现了最先进的结果。

The task of human reposing involves generating a realistic image of a person standing in an arbitrary conceivable pose. There are multiple difficulties in generating perceptually accurate images, and existing methods suffer from limitations in preserving texture, maintaining pattern coherence, respecting cloth boundaries, handling occlusions, manipulating skin generation, etc. These difficulties are further exacerbated by the fact that the possible space of pose orientation for humans is large and variable, the nature of clothing items is highly non-rigid, and the diversity in body shape differs largely among the population. To alleviate these difficulties and synthesize perceptually accurate images, we propose VGFlow. Our model uses a visibility-guided flow module to disentangle the flow into visible and invisible parts of the target for simultaneous texture preservation and style manipulation. Furthermore, to tackle distinct body shapes and avoid network artifacts, we also incorporate a self-supervised patch-wise "realness" loss to improve the output. VGFlow achieves state-of-the-art results as observed qualitatively and quantitatively on different image quality metrics (SSIM, LPIPS, FID).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源