论文标题

桌子检测和结构识别的深度学习:调查

Deep learning for table detection and structure recognition: A survey

论文作者

Kasem, Mahmoud, Abdallah, Abdelrahman, Berendeyev, Alexander, Elkady, Ebrahem, Abdalla, Mahmoud, Mahmoud, Mohamed, Hamada, Mohamed, Nurseitov, Daniyar, Taj-Eddin, Islam

论文摘要

桌子无处不在,从科学期刊,论文,网站和报纸一直到我们在超市购买的物品。因此,检测它们对于自动理解文档的内容至关重要。由于深度学习网络的快速发展,表检测的性能大大提高。这项调查的目标是对表检测领域的主要发展,提供对不同方法的洞察力,并为不同方法提供系统的分类法。此外,我们还对该领域的经典应用和新应用程序进行了分析。最后,组织了现有模型的数据集和源代码,以便为读者提供有关这些庞大文献的指南针。最后,我们介绍了利用各种对象检测和表结构识别方法来创建有效有效的系统的体系结构,以及一系列开发趋势,以跟上最新的算法和未来的研究。我们还设置了一个公共GitHub存储库,我们将在其中更新最新的出版物,打开数据和源代码。 GitHub存储库可从https://github.com/abdoelsayed2016/table-detection-scrupture-regnition获得。

Tables are everywhere, from scientific journals, papers, websites, and newspapers all the way to items we buy at the supermarket. Detecting them is thus of utmost importance to automatically understanding the content of a document. The performance of table detection has substantially increased thanks to the rapid development of deep learning networks. The goals of this survey are to provide a profound comprehension of the major developments in the field of Table Detection, offer insight into the different methodologies, and provide a systematic taxonomy of the different approaches. Furthermore, we provide an analysis of both classic and new applications in the field. Lastly, the datasets and source code of the existing models are organized to provide the reader with a compass on this vast literature. Finally, we go over the architecture of utilizing various object detection and table structure recognition methods to create an effective and efficient system, as well as a set of development trends to keep up with state-of-the-art algorithms and future research. We have also set up a public GitHub repository where we will be updating the most recent publications, open data, and source code. The GitHub repository is available at https://github.com/abdoelsayed2016/table-detection-structure-recognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源