论文标题

质量独立大空间叠加的重力 - 磁磁力

Gravito-diamagnetic forces for mass independent large spatial superpositions

论文作者

Zhou, Run, Marshman, Ryan J., Bose, Sougato, Mazumdar, Anupam

论文摘要

创建一个巨大的空间量子叠加,例如SchrödingerCatState,其中的质量和叠加大小在$ 10^{ - 19} -19} -10^{ - 14} $ kg和$ΔX\ sim 10〜 {\ rm nm nm nm} -100〜μ〜μ〜μ〜μ〜μ {\ rm m} $。到目前为止,所采用的方法依赖于波袋的扩展或量子Ancilla,例如单个自旋依赖性力,其与质量成反比。在本文中,我们提出了一种新颖的方法,该方法结合了引力加速度和磁管排斥,以在相对较短的时间内产生大型的空间叠加。在首次创建一个适中的初始空间叠加$ 1〜μ {\ rm m} $,通过诸如船尾gerlach(sg)设备等技术实现,我们将表明我们可以实现$ \ sim 10^{2} {2} -10^{3} $折叠,以提高到空间上位置大小($ 1〜 $ 1〜〜mm}波数据包之间的980〜μ {\ rm m} $通过使用地球的重力加速度,然后使用纳米晶体的diamagnetic排斥性散射,这两种散射都不取决于物体质量。最后,可以关闭波数据包轨迹,以便可以观察到空间干扰条纹。我们的发现突出了结合引力加速度和Dimagnetic排斥的潜力,以创建和操纵大型空间叠加,从而提供新的见解,以创建宏观量子叠加。

Creating a massive spatial quantum superposition, such as the Schrödinger cat state, where the mass and the superposition size within the range $10^{-19}-10^{-14}$ kg and $Δx \sim 10~{\rm nm}-100~μ{\rm m}$, is a challenging task. The methods employed so far rely either on wavepacket expansion or on a quantum ancilla, e.g. single spin dependent forces, which scale inversely with mass. In this paper, we present a novel approach that combines gravitational acceleration and diamagnetic repulsion to generate a large spatial superposition in a relatively short time. After first creating a modest initial spatial superposition of $1~μ{\rm m}$, achieved through techniques such as the Stern-Gerlach (SG) apparatus, we will show that we can achieve an $\sim 10^{2}-10^{3}$ fold improvement to the spatial superposition size ($1~{\rm μm}\rightarrow 980~μ{\rm m}$) between the wave packets in less than $0.02$~s by using the Earth's gravitational acceleration and then the diamagnetic repulsive scattering of the nanocrystal, neither of which depend on the object mass. Finally, the wave packet trajectories can be closed so that spatial interference fringes can be observed. Our findings highlight the potential of combining gravitational acceleration and diamagnetic repulsion to create and manipulate large spatial superpositions, offering new insights into creating macroscopic quantum superpositions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源