论文标题
$ n $二维非结构化的简单网格的当地精炼的共形标志性一分为二
Conformal marked bisection for local refinement of $n$-dimensional unstructured simplicial meshes
论文作者
论文摘要
我们提出了一种$ n $维标记的二级方法,用于非结构化的共形网格。我们设计了自适应$ n $维应用程序中本地改进的方法。为此,我们提出了一个网状标记预处理和三个标记的一分为二阶段。预处理标记了初始网格。然后,在第一个$ N-1 $等分方面,该方法以相反的顺序累积了新顶点列表。在第二阶段,$ n $ th then countion,该方法使用反向列表将一分为二的简单施放为反射简称,这是一种适用于最新顶点二分分的简称类型。在最后阶段,除了$ n $ th的二分之外,该方法可以切换为最新的顶点二分。为了允许此开关,在第二阶段之后,我们检查是否在均匀的一分点下,网格简形是共形和反射的。这些条件足以使用最新的顶点二进制,这是一种二合一方案,保证了局部改进的关键优势。最后,结果表明,所提出的一分为二的适合非结构化保形网格的局部细化。
We present an $n$-dimensional marked bisection method for unstructured conformal meshes. We devise the method for local refinement in adaptive $n$-dimensional applications. To this end, we propose a mesh marking pre-process and three marked bisection stages. The pre-process marks the initial mesh conformingly. Then, in the first $n-1$ bisections, the method accumulates in reverse order a list of new vertices. In the second stage, the $n$-th bisection, the method uses the reversed list to cast the bisected simplices as reflected simplices, a simplex type suitable for newest vertex bisection. In the final stage, beyond the $n$-th bisection, the method switches to newest vertex bisection. To allow this switch, after the second stage, we check that under uniform bisection the mesh simplices are conformal and reflected. These conditions are sufficient to use newest vertex bisection, a bisection scheme guaranteeing key advantages for local refinement. Finally, the results show that the proposed bisection is well-suited for local refinement of unstructured conformal meshes.