论文标题

由星星覆盖属性的相对版本定义的某些属性II

Some properties defined by relative versions of star-covering properties II

论文作者

Bonanzinga, Maddalena, Giacopello, Davide, Maesano, Fortunato

论文摘要

在本文中,我们考虑了Menger属性的一些最新相对版本,称为Set set star star Menger和Set Star Menger属性以及相应的Hurewicz型属性。特别是,使用\ cite {bmae},我们“很容易”证明了集合强的恒星Menger和SET强恒星Hurewicz属性在可计数的紧凑性与具有可数范围的特性之间。另外,我们还表明,常规的赛星门将或套装明星Hurewicz空间的程度不能超过$ \ frak c $。此外,我们构建了(1)一个固定的明星Menger(Set Star Hurewicz)空间的一致示例,该空间并非强烈地将恒星Menger(Set Lasse star star Hurewicz)固定,并表明(2)(2)Set Star Menger(Set Star Hurewicz)带有紧凑型空间的Set Star Menger(Set Star Hurewicz)空间的产物,不需要是SET STAR MENGER(SET STAR MENGER(SET HUREWICZ)。特别是,(1)和(2)回答Kočinac,Konca和Singh在\ cite {kks-ms}和\ cite {s-am}中提出的一些问题。

In this paper we consider some recent relative versions of Menger property called set strongly star Menger and set star Menger properties and the corresponding Hurewicz-type properties. In particular, using \cite {BMae}, we "easily" prove that the set strong star Menger and set strong star Hurewicz properties are between countable compactness and the property of having countable extent. Also we show that the extent of a regular set star Menger or a set star Hurewicz space cannot exceed $\frak c$. Moreover, we construct (1) a consistent example of a set star Menger (set star Hurewicz) space which is not set strongly star Menger (set strongly star Hurewicz) and show that (2) the product of a set star Menger (set star Hurewicz) space with a compact space need not be set star Menger (set star Hurewicz). In particular, (1) and (2) answer to some questions posed by Kočinac, Konca and Singh in \cite{KKS-MS} and \cite{S-AM}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源