论文标题

内容输送网络中的缓存优化矩阵分解(CDN)

Matrix Factorization for Cache Optimization in Content Delivery Networks (CDN)

论文作者

Kamuzora, Adolf, Skaf, Wadie, Birihanu, Ermiyas, Mahmud, Jiyan, Kiss, Péter, Jursonovics, Tamás, Pogrzeba, Peter, Lendák, Imre, Horváth, Tomáš

论文摘要

内容输送网络(CDN)是Internet上高吞吐量,低延迟服务的关键组成部分。 CDN缓存服务器的存储空间和带宽有限,并且实现了最先进的缓存入学和驱逐算法,以选择为服务客户选择最流行和最相关的内容。这项研究的目的是利用最先进的建议系统技术来预测CDN中的高速缓存含量。矩阵分解用于预测内容流行,这是在CDN Edge服务器上运行的内容驱逐和内容入学算法中的有价值信息。使用了自定义实现的矩阵分解类和米中矿。输入CDN日志是从欧洲电信服务提供商那里收到的。我们使用该数据构建了一个矩阵分解模型,并利用网格搜索来调整其超参数。实验结果表明,对所提出的方法有希望,我们表明在现实生活中的CDN日志数据上可以实现较低的均方根误差值。

Content delivery networks (CDNs) are key components of high throughput, low latency services on the internet. CDN cache servers have limited storage and bandwidth and implement state-of-the-art cache admission and eviction algorithms to select the most popular and relevant content for the customers served. The aim of this study was to utilize state-of-the-art recommender system techniques for predicting ratings for cache content in CDN. Matrix factorization was used in predicting content popularity which is valuable information in content eviction and content admission algorithms run on CDN edge servers. A custom implemented matrix factorization class and MyMediaLite were utilized. The input CDN logs were received from a European telecommunication service provider. We built a matrix factorization model with that data and utilized grid search to tune its hyper-parameters. Experimental results indicate that there is promise about the proposed approaches and we showed that a low root mean square error value can be achieved on the real-life CDN log data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源