论文标题
高阶多项式模型中的扭结
Kinks in higher-order polynomial models
论文作者
论文摘要
我们考虑一个在(1+1)维时时间中具有真实标量场的现场理论模型家族。每个模型中的场动力学由具有两个简并最小值的多项式电势决定。我们获得具有幂律渐近行为的纠结解决方案的确切一般公式。我们还为所有发现的扭结的渐近学书写了公式。此外,我们分析了获得的纠结的其他一些特性:稳定性电位,零模式,质量中心的位置。
We consider a family of field-theoretic models with a real scalar field in (1+1)-dimensional space-time. The field dynamics in each model is determined by a polynomial potential with two degenerate minima. We obtain exact general formulas for kink solutions with power-law asymptotic behavior. We also write out formulas for the asymptotics of all found kinks. In addition, we analyze some other properties of the obtained kinks: stability potentials, zero modes, positions of the centers of mass.