论文标题

在弯曲的磁性涡旋中修改三麦克农的分裂

Modification of three-magnon splitting in a flexed magnetic vortex

论文作者

Körber, Lukas, Heins, Christopher, Soldatov, Ivan, Schäfer, Rudolf, Kákay, Attila, Schultheiss, Helmut, Schultheiss, Katrin

论文摘要

我们提出了一项实验性和数值研究,对三麦克农的分裂在微米尺寸的磁盘中,其涡流状态被静态的面内磁场强烈变形。在频率$ f_ \ mathrm {rf} $上以足够大的功率激发,圆柱磁性涡流的主要径向镁模式可以通过自发的三麦克诺拆分衰变成次​​级方位角模式。该非线性过程显示了导致辅助模式的定义明确和不同频率的选择规则$ f_ \ mathrm {rf}/2 \ pmΔf$。在这里,我们证明,通过使用平面磁场的磁涡式变形,可以显着修改涡旋中的三麦克农孔,从而导致更丰富的三麦克努因响应。我们发现,随着场的增加,另一类的辅助模式被激发了,该模式位于位于位移涡流核心附近的高度曲折区域。尽管这些模式满足了三麦克农拆分的相同选择规则,但与常规的辅助涡旋相比,它们表现出比三麦克农阈值的阈值功率要低得多。应用的静态磁场很小($ \ simeq $ 10吨),提供了一个有效的参数,可以控制受限涡流的非线性光谱响应。我们的工作扩展了对涡流中非线性磁蛋白动态的理解,并将其宣传为基于镁质的潜在神经形态应用。

We present an experimental and numerical study of three-magnon splitting in a micrometer-sized magnetic disk with the vortex state strongly deformed by static in-plane magnetic fields. Excited with a large enough power at frequency $f_\mathrm{RF}$, the primary radial magnon modes of a cylindrical magnetic vortex can decay into secondary azimuthal modes via spontaneous three-magnon splitting. This nonlinear process exhibits selection rules leading to well-defined and distinct frequencies $f_\mathrm{RF}/2\pm Δf$ of the secondary modes. Here, we demonstrate that three-magnon splitting in vortices can be significantly modified by deforming the magnetic vortex with in-plane magnetic fields, leading to a much richer three-magnon response. We find that, with increasing field, an additional class of secondary modes is excited which are localized to the highly-flexed regions adjacent to the displaced vortex core. While these modes satisfy the same selection rules of three-magnon splitting, they exhibit a much lower three-magnon threshold power compared to regular secondary modes of a centered vortex. The applied static magnetic fields are small ($\simeq$ 10 mT), providing an effective parameter to control the nonlinear spectral response of confined vortices. Our work expands the understanding of nonlinear magnon dynamics in vortices and advertises these for potential neuromorphic applications based on magnons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源