论文标题

在非曼菲德多面体中,具有跳跃的多项式插值

Jump-preserving polynomial interpolation in non-manifold polyhedra

论文作者

Averseng, Martin

论文摘要

We construct a piecewise-polynomial interpolant $u \mapsto Πu$ for functions $u:Ω\setminus Γ\to \mathbb{R}$, where $Ω\subset \mathbb{R}^d$ is a Lipschitz polyhedron and $Γ\subset Ω$ is a possibly non-manifold $(d-1)$-dimensional高表面。这种插值在相关的sobolev规范中具有近似属性,以及一组其他代数属性,即$π^2 =π$,$π$保留了均匀的边界价值,并在$γ$上跳跃。作为一个应用程序,我们在$γ$上获得了“跳跃”运算符的有界离散右内,以及Galerkin方案的错误估算值,以在$ω$中求解二阶椭圆pde,并在$γ$上开张。

We construct a piecewise-polynomial interpolant $u \mapsto Πu$ for functions $u:Ω\setminus Γ\to \mathbb{R}$, where $Ω\subset \mathbb{R}^d$ is a Lipschitz polyhedron and $Γ\subset Ω$ is a possibly non-manifold $(d-1)$-dimensional hypersurface. This interpolant enjoys approximation properties in relevant Sobolev norms, as well as a set of additional algebraic properties, namely, $Π^2 = Π$, and $Π$ preserves homogeneous boundary values and jumps of its argument on $Γ$. As an application, we obtain a bounded discrete right-inverse of the "jump" operator across $Γ$, and an error estimate for a Galerkin scheme to solve a second-order elliptic PDE in $Ω$ with a prescribed jump across $Γ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源