论文标题
具有迭代原型适应的低弹射对象计数网络
A Low-Shot Object Counting Network With Iterative Prototype Adaptation
论文作者
论文摘要
我们考虑仅使用几个带注释的示例(几乎没有示例)或没有示例(无射击)来考虑图像中任意语义类别的低射击计数。标准的少量流水线遵循从示例中提取外观查询,并将它们与图像功能匹配以推断对象数量。现有方法通过特征池提取查询,从而忽略形状信息(例如大小和方面),并导致对象定位精度和计数估计值降低。我们提出了一个具有迭代原型适应(LOCA)的低弹射对象计数网络。我们的主要贡献是新的对象原型提取模块,迭代地将其与图像特征融合在一起。该模块很容易适应零拍的方案,使LoCA能够涵盖低射击计数问题的整个频谱。 LoCA在FSC147基准上的所有最新方法都优于一击的RMSE,而在RMSE中的所有最新方法则超过20-30%,并且在零弹性方案上实现了最先进的方法,同时表现出更好的概括能力。
We consider low-shot counting of arbitrary semantic categories in the image using only few annotated exemplars (few-shot) or no exemplars (no-shot). The standard few-shot pipeline follows extraction of appearance queries from exemplars and matching them with image features to infer the object counts. Existing methods extract queries by feature pooling which neglects the shape information (e.g., size and aspect) and leads to a reduced object localization accuracy and count estimates. We propose a Low-shot Object Counting network with iterative prototype Adaptation (LOCA). Our main contribution is the new object prototype extraction module, which iteratively fuses the exemplar shape and appearance information with image features. The module is easily adapted to zero-shot scenarios, enabling LOCA to cover the entire spectrum of low-shot counting problems. LOCA outperforms all recent state-of-the-art methods on FSC147 benchmark by 20-30% in RMSE on one-shot and few-shot and achieves state-of-the-art on zero-shot scenarios, while demonstrating better generalization capabilities.