论文标题
范德华抗铁磁铁中的自旋剪切耦合的动力临界性
Dynamical criticality of spin-shear coupling in van der Waals antiferromagnets
论文作者
论文摘要
众多的电子,自旋和晶格自由度之间的相互作用是量子材料的复杂相图的基础。在范德华(VDW)异质结构中的层堆叠负责外来电子和磁性特性,这激发了对二维磁化的堆叠控制。除了堆叠顺序和层间磁性之间的相互作用之外,我们还发现了一种自旋剪切耦合机制,在该机制中,原子层的微妙剪切物可以对VDW抗fiferromagnets家族中的内层磁性产生深远的影响。使用时间分辨的X射线衍射和光学线性二色性测量,层间剪切被确定为伴侣与磁性的主要结构自由度。光激发时的剪切和磁顺序的恢复时间在磁顺序温度下以相同的临界指数差异。时间依赖性的金茨堡 - 兰道理论表明,这种并发的临界放慢速度是由层间剪切剪切与磁性层的线性耦合引起的,这是由单纤维层堆叠的破碎的镜像对称性决定的。我们的结果强调了通过自旋机械耦合在超快控制磁性方面的层剪切剪切物的重要性。
The interplay between a multitude of electronic, spin, and lattice degrees of freedom underlies the complex phase diagrams of quantum materials. Layer stacking in van der Waals (vdW) heterostructures is responsible for exotic electronic and magnetic properties, which inspires stacking control of two-dimensional magnetism. Beyond the interplay between stacking order and interlayer magnetism, we discover a spin-shear coupling mechanism in which a subtle shear of the atomic layers can have a profound effect on the intralayer magnetic order in a family of vdW antiferromagnets. Using time-resolved x-ray diffraction and optical linear dichroism measurements, interlayer shear is identified as the primary structural degree of freedom that couples with magnetic order. The recovery times of both shear and magnetic order upon optical excitation diverge at the magnetic ordering temperature with the same critical exponent. The time-dependent Ginzburg-Landau theory shows that this concurrent critical slowing down arises from a linear coupling of the interlayer shear to the magnetic order, which is dictated by the broken mirror symmetry intrinsic to the monoclinic stacking. Our results highlight the importance of interlayer shear in ultrafast control of magnetic order via spin-mechanical coupling.