论文标题

在发展的人类新皮层中,通过单细胞RNA的数据来推断细胞特异性LNCRNA调节

Inferring cell-specific lncRNA regulation with single-cell RNA-sequencing data in the developing human neocortex

论文作者

Huang, Meng, Ma, Jiangtao, Long, Changzhou, Zhang, Junpeng, Ye, Xiucai, Sakurai, Tetsuya

论文摘要

长的非编码RNA(LNCRNA)是调节发展中脑中基因表达和细胞增殖的重要调节剂。先前的方法主要使用大量lncRNA和mRNA表达数据来研究lncRNA调控。但是,为了分析有关单个细胞的lncRNA调节,我们专注于单细胞RNA-sequesing(SCRNA-SEQ)数据,而不是大量数据。 SCRNA-SEQ的最新进展为研究单细胞水平的LNCRNA调控提供了一种方法。我们将提出一种新型的计算方法CSLNCR(细胞特异性LNCRNA调控),该方法将推定的LNCRNA-MRNA结合信息与SCRNA-SEQ数据结合在一起,包括LNCRNA和MRNA,以识别单个细胞的细胞特异性LNCRNA-MRNA调控网络。为了了解不同发展阶段的lncRNA调节,我们将CSLNCR应用于人类新皮层的SCRNA-SEQ数据。网络分析表明,来自不同人类新皮层发育阶段的每个细胞中LNCRNA调节是独特的。比较结果表明,CSLNCR也是预测细胞特异性LNCRNA靶标和聚类单细胞的有效工具,这有助于了解细胞细胞的通信。

Long non-coding RNAs (lncRNAs) are important regulators to modulate gene expression and cell proliferation in the developing human brain. Previous methods mainly use bulk lncRNA and mRNA expression data to study lncRNA regulation. However, to analyze lncRNA regulation regarding individual cells, we focus on single-cell RNA-sequencing (scRNA-seq) data instead of bulk data. Recent advance in scRNA-seq has provided a way to investigate lncRNA regulation at single-cell level. We will propose a novel computational method, CSlncR (cell-specific lncRNA regulation), which combines putative lncRNA-mRNA binding information with scRNA-seq data including lncRNAs and mRNAs to identify cell-specific lncRNA-mRNA regulation networks at individual cells. To understand lncRNA regulation at different development stages, we apply CSlncR to the scRNA-seq data of human neocortex. Network analysis shows that the lncRNA regulation is unique in each cell from the different human neocortex development stages. The comparison results indicate that CSlncR is also an effective tool for predicting cell-specific lncRNA targets and clustering single cells, which helps understand cell-cell communication.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源