论文标题

伊甸园:用于乳腺癌复发的事件检测网络在行政索赔数据中复发

EDEN : An Event DEtection Network for the annotation of Breast Cancer recurrences in administrative claims data

论文作者

Dumas, Elise, Hamy, Anne-Sophie, Houzard, Sophie, Hernandez, Eva, Toussaint, Aullène, Guerin, Julien, Chanas, Laetitia, de Castelbajac, Victoire, Saint-Ghislain, Mathilde, Grandal, Beatriz, Daoud, Eric, Reyal, Fabien, Azencott, Chloé-Agathe

论文摘要

尽管大型行政索赔数据的出现为研究提供了机会,但它们的使用仍然受到与疾病结局有关的临床注释的限制,例如乳腺癌的复发(BC)。行政索赔中此类终点的注释引起了一些挑战,包括需要推断出复发的发生和日期,数据的直接审查或医疗访问之间的时间间隔的重要性。深度学习方法已成功地用于标记时间医学序列,但是目前尚无方法可以同时处理右审查并访问时间性以检测医疗序列中的生存事件。我们提出了Eden(事件检测网络),这是一个时间吸引的长期记忆网络,用于生存分析及其自定义损失功能。我们的方法的表现优于现实世界中BC数据集上的几种最新方法。伊甸园(Eden)构成了一种强大的工具,可以从行政主张中重新出现疾病复发,从而为在卑诗省研究中大量使用此类数据铺平了道路。

While the emergence of large administrative claims data provides opportunities for research, their use remains limited by the lack of clinical annotations relevant to disease outcomes, such as recurrence in breast cancer (BC). Several challenges arise from the annotation of such endpoints in administrative claims, including the need to infer both the occurrence and the date of the recurrence, the right-censoring of data, or the importance of time intervals between medical visits. Deep learning approaches have been successfully used to label temporal medical sequences, but no method is currently able to handle simultaneously right-censoring and visit temporality to detect survival events in medical sequences. We propose EDEN (Event DEtection Network), a time-aware Long-Short-Term-Memory network for survival analyses, and its custom loss function. Our method outperforms several state-of-the-art approaches on real-world BC datasets. EDEN constitutes a powerful tool to annotate disease recurrence from administrative claims, thus paving the way for the massive use of such data in BC research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源