论文标题
预测网站上的眼睛凝视地点
Predicting Eye Gaze Location on Websites
论文作者
论文摘要
全球范围内将网站和网页作为主要界面,促进了重要信息的传播。因此,至关重要的是要优化它们以更好地进行用户交互,这主要是通过分析用户的行为,尤其是用户的眼光凝视位置来完成的。但是,收集这些数据仍然被认为是劳动和时间密集的。在这项工作中,我们可以将自动目光估算的开发作为网站屏幕截图作为输入。这是由统一数据集的策划完成的,该数据集由网站屏幕截图,眼睛凝视热图和网站的布局信息组成,以图像和文本掩码的形式组成。我们预处理的数据集使我们能够提出一个利用图像和文本空间位置的有效基于深度学习的模型,该模型通过注意机制结合起来,以进行有效的眼睛凝视预测。在我们的实验中,我们展示了使用统一数据集仔细微调来提高目光预测的准确性的好处。我们进一步观察了模型专注于目标区域(图像和文本)以达到高精度的能力。最后,与其他替代方案的比较显示了我们模型建立眼睛凝视预测任务的基准的最新结果。
World-wide-web, with the website and webpage as the main interface, facilitates the dissemination of important information. Hence it is crucial to optimize them for better user interaction, which is primarily done by analyzing users' behavior, especially users' eye-gaze locations. However, gathering these data is still considered to be labor and time intensive. In this work, we enable the development of automatic eye-gaze estimations given a website screenshots as the input. This is done by the curation of a unified dataset that consists of website screenshots, eye-gaze heatmap and website's layout information in the form of image and text masks. Our pre-processed dataset allows us to propose an effective deep learning-based model that leverages both image and text spatial location, which is combined through attention mechanism for effective eye-gaze prediction. In our experiment, we show the benefit of careful fine-tuning using our unified dataset to improve the accuracy of eye-gaze predictions. We further observe the capability of our model to focus on the targeted areas (images and text) to achieve high accuracy. Finally, the comparison with other alternatives shows the state-of-the-art result of our model establishing the benchmark for the eye-gaze prediction task.