论文标题

带有小波变换的遥感数据的后门攻击

Backdoor Attacks for Remote Sensing Data with Wavelet Transform

论文作者

Dräger, Nikolaus, Xu, Yonghao, Ghamisi, Pedram

论文摘要

近年来,深度学习算法在地球科学和遥感领域取得了巨大的成功。然而,深度学习模型的安全性和鲁棒性在解决安全至关重要的遥感任务时应特别关注。在本文中,我们对遥感数据的后门攻击进行了系统的分析,其中考虑了场景分类和语义分割任务。尽管大多数现有的后门攻击算法都依赖于可见的触发器,例如具有精心设计的图案的平方贴片,但我们提出了一种基于小波变换的新型攻击(WABA)方法,该方法可以通过将触发图像注入低频域中的中毒图像,从而实现无形的攻击。这样,可以在攻击中过滤触发图像中的高频信息,从而导致隐秘的数据中毒。尽管它很简单,但提出的方法可以显着欺骗当前的最新深度学习模型,其攻击成功率很高。我们进一步分析了小波变换中的不同触发图像和超参数将如何影响提出的方法的性能。在四个基准遥感数据集上进行的大量实验证明了该方法对场景分类和语义分割任务的有效性,因此强调了设计高级后门防御算法在遥感方案中解决这一威胁的重要性。该代码将在\ url {https://github.com/ndraeger/waba}在线提供。

Recent years have witnessed the great success of deep learning algorithms in the geoscience and remote sensing realm. Nevertheless, the security and robustness of deep learning models deserve special attention when addressing safety-critical remote sensing tasks. In this paper, we provide a systematic analysis of backdoor attacks for remote sensing data, where both scene classification and semantic segmentation tasks are considered. While most of the existing backdoor attack algorithms rely on visible triggers like squared patches with well-designed patterns, we propose a novel wavelet transform-based attack (WABA) method, which can achieve invisible attacks by injecting the trigger image into the poisoned image in the low-frequency domain. In this way, the high-frequency information in the trigger image can be filtered out in the attack, resulting in stealthy data poisoning. Despite its simplicity, the proposed method can significantly cheat the current state-of-the-art deep learning models with a high attack success rate. We further analyze how different trigger images and the hyper-parameters in the wavelet transform would influence the performance of the proposed method. Extensive experiments on four benchmark remote sensing datasets demonstrate the effectiveness of the proposed method for both scene classification and semantic segmentation tasks and thus highlight the importance of designing advanced backdoor defense algorithms to address this threat in remote sensing scenarios. The code will be available online at \url{https://github.com/ndraeger/waba}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源