论文标题
部分可观测时空混沌系统的无模型预测
Evidence-based Match-status-Aware Gait Recognition for Out-of-Gallery Gait Identification
论文作者
论文摘要
现有的步态识别方法通常会根据探针和画廊样本之间的相似性来识别个体。但是,这些方法通常忽略了画廊可能不包含与探针相对应的身份的事实,从而导致识别不正确。为了识别出现外(OOG)步态查询,我们提出了一个基于证据的匹配状态的步态识别(EMA-GR)框架。受证据深度学习(EDL)的启发,EMA-GR旨在量化与识别匹配状态相关的不确定性。因此,EMA-GR识别探针在画廊中是否具有对应物。具体来说,我们采用证据收集器来从识别结果对中收集匹配状态证据,并按照Dempster-shafer的证据理论(DST)参数分配了在收集的证据上的差异分布。我们衡量不确定性并预测识别结果的匹配状态,从而确定探针是否是OOG查询。对于我们所知,我们的方法是解决步态识别中的OOG查询的首次尝试。此外,EMA-GR对步态识别方法不可知,并提高了针对OOG查询的鲁棒性。广泛的实验表明,我们的方法在具有OOG查询的数据集上实现了最新的性能,并且还可以很好地推广到其他身份 - 回归任务。重要的是,我们的方法超过了现有的最新方法,当OOG查询率在OUMVLP上约为50%时,提高了51.26%。
Existing gait recognition methods typically identify individuals based on the similarity between probe and gallery samples. However, these methods often neglect the fact that the gallery may not contain identities corresponding to the probes, leading to incorrect recognition.To identify Out-of-Gallery (OOG) gait queries, we propose an Evidence-based Match-status-Aware Gait Recognition (EMA-GR) framework. Inspired by Evidential Deep Learning (EDL), EMA-GR is designed to quantify the uncertainty associated with the match status of recognition. Thus, EMA-GR identifies whether the probe has a counterpart in the gallery. Specifically, we adopt an evidence collector to gather match status evidence from a recognition result pair and parameterize a Dirichlet distribution over the gathered evidence, following the Dempster-Shafer Theory of Evidence (DST). We measure the uncertainty and predict the match status of the recognition results, and thus determine whether the probe is an OOG query.To the best of our knowledge, our method is the first attempt to tackle OOG queries in gait recognition. Moreover, EMA-GR is agnostic against gait recognition methods and improves the robustness against OOG queries. Extensive experiments demonstrate that our method achieves state-of-the-art performance on datasets with OOG queries, and can also generalize well to other identity-retrieval tasks. Importantly, our method surpasses existing state-of-the-art methods by a substantial margin, achieving a 51.26% improvement when the OOG query rate is around 50% on OUMVLP.