论文标题

部分可观测时空混沌系统的无模型预测

Blind Performance Prediction for Deep Learning Based Ultra-Massive MIMO Channel Estimation

论文作者

Yu, Wentao, He, Hengtao, Yu, Xianghao, Song, Shenghui, Zhang, Jun, Letaief, Khaled B.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Reliability is of paramount importance for the physical layer of wireless systems due to its decisive impact on end-to-end performance. However, the uncertainty of prevailing deep learning (DL)-based physical layer algorithms is hard to quantify due to the black-box nature of neural networks. This limitation is a major obstacle that hinders their practical deployment. In this paper, we attempt to quantify the uncertainty of an important category of DL-based channel estimators. An efficient statistical method is proposed to make blind predictions for the mean squared error of the DL-estimated channel solely based on received pilots, without knowledge of the ground-truth channel, the prior distribution of the channel, or the noise statistics. The complexity of the blind performance prediction is low and scales only linearly with the number of antennas. Simulation results for ultra-massive multiple-input multiple-output (UM-MIMO) channel estimation with a mixture of far-field and near-field paths are provided to verify the accuracy and efficiency of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源