论文标题
部分可观测时空混沌系统的无模型预测
The uniform measure for quantum walk on hypercube: a quantum Bernoulli noises approach
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this paper, we present a quantum Bernoulli noises approach to quantum walks on hypercubes. We first obtain an alternative description of a general hypercube and then, based on the alternative description, we find that the operators $\partial_k^* + \partial_k$ behave actually as the shift operators, where $\partial_k$ and $\partial_k^*$ are the annihilation and creation operators acting on Bernoulli functionals, respectively. With the above operators as the shift operators on the position space, we introduce a discrete-time quantum walk model on a general hypercube and obtain an explicit formula for calculating its probability distribution at any time. We also establish two limit theorems showing that the averaged probability distribution of the walk even converges to the uniform probability distribution. Finally, we show that the walk produces the uniform measure as its stationary measure on the hypercube provided its initial state satisfies some mild conditions. Some other results are also proven.