论文标题
采矿渐进模式的元启发式方法
A Metaheuristic Approach for Mining Gradual Patterns
论文作者
论文摘要
群体智能是一门学科,研究了一群人彼此及其环境的当地互动产生的集体行为。在计算机科学领域,将许多群智能技术应用于优化问题,这些问题试图在搜索空间中有效找到最佳解决方案。逐渐的模式挖掘是另一个计算机科学领域,它可以从基于群体的优化技术的效率中受益,以从巨大的搜索空间找到渐进模式。逐渐模式是基于规则的相关性,它描述了数据集的属性之间的逐渐关系。例如,数据集的给定属性{g,h}逐渐模式可能采用:“ g越少,h越h”。在本文中,我们提出了一个用于定义有效搜索空间的渐进模式候选的数字编码。此外,我们提出了对几种荟萃分析优化技术的系统研究,作为使用我们的搜索空间找到渐进模式的有效解决方案。
Swarm intelligence is a discipline that studies the collective behavior that is produced by local interactions of a group of individuals with each other and with their environment. In Computer Science domain, numerous swarm intelligence techniques are applied to optimization problems that seek to efficiently find best solutions within a search space. Gradual pattern mining is another Computer Science field that could benefit from the efficiency of swarm based optimization techniques in the task of finding gradual patterns from a huge search space. A gradual pattern is a rule-based correlation that describes the gradual relationship among the attributes of a data set. For example, given attributes {G,H} of a data set a gradual pattern may take the form: "the less G, the more H". In this paper, we propose a numeric encoding for gradual pattern candidates that we use to define an effective search space. In addition, we present a systematic study of several meta-heuristic optimization techniques as efficient solutions to the problem of finding gradual patterns using our search space.