论文标题

关于Aharoni的彩虹循环的笔记猜想

Notes on Aharoni's rainbow cycle conjecture

论文作者

Clinch, Katie, Goerner, Jackson, Huynh, Tony, Illingworth, Freddie

论文摘要

在2017年,罗恩·阿哈罗尼(Ron Aharoni)对边缘颜色图中的彩虹循环做出了以下猜想:如果$ g $是$ n $ vertex图形,其边缘的边缘颜色为$ n $颜色,每个颜色类别至少$ r $,那么$ g $,则最多包含$ \ lceil \ lceil \ lceil \ frac \ frac \ frac $ frac $ freac $ freac $ freac $ freac $。研究Aharoni的猜想的一种动机是,这是从1978年开始对Digraphs的Caccetta-Häggkvist的加强。 在本文中,我们介绍了Aharoni的猜想的调查,其中包括许多最近的部分结果和相关的猜想。我们还提出了两个新的结果。我们的主要新结果是$ r = 3 $ case of Aharoni的猜想。我们证明,如果$ g $是$ n $ vertex图,其边缘的颜色为$ n $颜色,并且每个颜色类的大小至少3个,则$ g $包含一个长度的彩虹循环,最多最多$ \ frac {4n} {9} {9}+7 $。我们还讨论了我们的方法如何推广到$ r $的较大值。

In 2017, Ron Aharoni made the following conjecture about rainbow cycles in edge-coloured graphs: If $G$ is an $n$-vertex graph whose edges are coloured with $n$ colours and each colour class has size at least $r$, then $G$ contains a rainbow cycle of length at most $\lceil \frac{n}{r} \rceil$. One motivation for studying Aharoni's conjecture is that it is a strengthening of the Caccetta-Häggkvist conjecture on digraphs from 1978. In this article, we present a survey of Aharoni's conjecture, including many recent partial results and related conjectures. We also present two new results. Our main new result is for the $r=3$ case of Aharoni's conjecture. We prove that if $G$ is an $n$-vertex graph whose edges are coloured with $n$ colours and each colour class has size at least 3, then $G$ contains a rainbow cycle of length at most $\frac{4n}{9}+7$. We also discuss how our approach might generalise to larger values of $r$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源