论文标题
通过特征层次边缘推理启用AI质量控制
Enabling AI Quality Control via Feature Hierarchical Edge Inference
论文作者
论文摘要
随着边缘计算的兴起,预计将通过基于在网络边缘运行的深神经网络(DNN)的推理在移动方面提供各种AI服务,称为Edge推理(EI)。另一方面,所得的AI质量(例如,客观检测中的平均平均精度)被视为给定因素,尽管AI质量控制在满足不同用户的各种需求方面的重要性,但AI质量控制尚未探索。这项工作旨在通过提出功能层次EI(FHEI),包括功能网络和推理网络分别部署在边缘服务器和相应的移动设备上,来解决该问题。具体而言,功能网络是基于特征层次结构设计的,该特征层次结构是一种具有不同规模的单向特征依赖性。更高的规模功能需要更多的计算和通信负载,同时它提供了更好的AI质量。权衡使FHEI逐渐控制AI质量W.R.T.通信和计算负载,导致在上行链路\&Downlink Transmissions以及Edge Server和移动计算功能的约束下得出近乎最佳的解决方案,以最大程度地提高多用户AI质量。通过广泛的模拟验证了FHEI体系结构的拟议联合通信和汇总控制始终优于几个基准,从而根据通信和计算条件来区分每个用户的AI质量。
With the rise of edge computing, various AI services are expected to be available at a mobile side through the inference based on deep neural network (DNN) operated at the network edge, called edge inference (EI). On the other hand, the resulting AI quality (e.g., mean average precision in objective detection) has been regarded as a given factor, and AI quality control has yet to be explored despite its importance in addressing the diverse demands of different users. This work aims at tackling the issue by proposing a feature hierarchical EI (FHEI), comprising feature network and inference network deployed at an edge server and corresponding mobile, respectively. Specifically, feature network is designed based on feature hierarchy, a one-directional feature dependency with a different scale. A higher scale feature requires more computation and communication loads while it provides a better AI quality. The tradeoff enables FHEI to control AI quality gradually w.r.t. communication and computation loads, leading to deriving a near-to-optimal solution to maximize multi-user AI quality under the constraints of uplink \& downlink transmissions and edge server and mobile computation capabilities. It is verified by extensive simulations that the proposed joint communication-and-computation control on FHEI architecture always outperforms several benchmarks by differentiating each user's AI quality depending on the communication and computation conditions.